

KULR TECHNOLOGY GROUP, INC.

Engineering Technology Roadmap October 2024 Update

Our History

2015 KULR Tec Corporat in San Die	chnology ion founded ego, CA.	2017 Licensing a with NASA fiber thern manageme technology	agreement - carbon nal ent y.	2019 Announce safe batte leveraging FTRC data	ment of ry design NASA	2021 Listed o Americ	on the NYSE an Exchange.	2023 Battery D Testing Ce Excellence Webster, Exclusive FTRC licer	esign and enter of e opened in TX. NASA L- nse.	2025 Launch c commer Space (K Guardiar platform	of the cialized 1S) and n (K1G) s.
						to get					
									47		
2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026
Develoj thermal shield t	2016 pment of runaway (TRS) for patteries.	Exclusive li agreeme NREL and N	2018 icensing S ent with flo IASA for ISC-D.	2019 afeX product line own to ISS for use in crewed space applications.	20 KULR PCM heat si lands on Mars w Mars Roy Perseverand	21 nk ith ver ce.	2022 Licensing of small and large FTRC technology from NASA.	Expansio operati relocation of H based	2024 on of TX ons and ser IQ to TX inc offices.	2025 Battery testing vices expanded to lude environment testing.	

Technology Domains

Battery Design and Analysis

Custom Batteries	KULR ONE	F	Products	
 Industry Experts Designs by engineering team with space flight hardware and BMS dev. experience. Engineers with backgrounds from NASA, Axiom, commercial battery industry, small-sat industry 	 KULR ONE Space 18650/21700 architecture Thermal runaway safety achieved via passive propagation resistant (PPR) design architecture. Designed with intent for JSC 20793 Revision D satisfaction. 	 Radiation Tolerant Battery Management System (BMS) Designed for 20793 Rev. D battery systems Off-the-shelf, vacuum tolerant & radiation tolerant, flight ready system. Ground up safety first architecture. 	 Trigger Cells and ISC-Ds Internal short-circuiting device for implant. Pre-built trigger cells with ISC-D already implanted. Low temp trigger thermal runaway at 55 °C High temp trigger thermal runaway at 70 °C 	
 Computer Aided Design (CAD) Solidworks Design management w/ Solidworks PDM Autodesk Fusion 360 Design management with Autodesk Fusion Manage ISO9000/AS9100 controlled design release processes 	 KULR ONE Guardian 18650/21700 architecture PPR safety strategy. Robust materials selection for extreme environments. Designed for DoD applications. MIL-STD-810H and MIL-PRF. 	 CellCheck[™] Real time monitoring and logistics of battery performance. Safety and state-of-health monitoring. Fleet management. 	 Thermal Runaway Cell Body Heating Protection Thermal Runaway Shield (TRS) for rapid cooling of conducted thermal runaway heating. KULR core composite interstitial solution for operation heat management and thermal runaway heat management. 	200 Series KULR ONE Space (K1S)
Finite Element Modeling (FEM) and Analysis • ANSYS SpaceClaim & TD Direct • Thermal Desktop • SINDA/FLUINT • GT-SUITEmp	 KULR ONE Air Pouch silicon cell architectur Low mass / low volume structures for aerospace (eVTOL) applications. Module-to-module propagation resistance strategy. Consideration given to DO311 requirements. 	 WI-37A Screened Cells 18650 format li-ion cells. Pre-screened to NASA JSC EP-WI37A Cells arrive to customers pre-matched, screened, and ready to be installed. 	 Thermal Runaway Ejecta Mitigation Side wall rupture tubing to protect from potential products expelled through an off- nominal failure. Burst covers to protect from flowing ejecta. Fibercore flame arrestor to ensure only smoke exits the pack for single cell TR. 	Radiation Tolerant BMS

Vision to Deliver Leading Energy Storage Solutions

OTS Battery Management Systems (BMS)

K1S Off-the-Shelf BMS

- Radiation tolerant (75 kRad),
- · UART or I2C communications for up to 8 strings.
- Microcontroller based -> endless customization on circuitry.
- · Low parasitic drain to support long duration stays in payload bay.
- 10A sustained draw.

K1G Off-the-Shelf BMS

- ASIC BMS chip with added microcontroller chip.
- 7 to 10 strings in current config, easily modifiable for up to 20 for higher voltage applications.
- 76 A sustained draw; able to increase as needed

K1S OTS BMS

Customizable GUI for monitoring.

Status Setup and Con	nmand R	legister OCV-SOC curve	Monitor	Complexities and Use				
Pack voltage (mV)	23814	Cell 6 (mV)	3377	OV Trip (mV)	4200	OTD Trip (*C)	60	
Cell 1 (mV)	3385	Cell 7 (mV)	3369	LIV Trip (mV)	2500	UTD Trip (*C)	1	
Cell 2 (mV)	2205	Current (mA)	.33	OC Trip (A)	72			
Cell 2 (IIV)	2200	Batt Temperature (*C)	-33		/2 UTC			
Cell 3 (mv)	3300		20.1	balance voit (mv)	4000			
Cell 4 (mV)	3388		20.1	State of Charge	96	Battery Fault	00	
Cell 5 (mV)	3373 Heater trigger (°C)		0	State of Health	100	Operation mode	Auto	
		Heater output	OFF	Time to discharge (min)	65535	Heater control	Disable	

Cell and Battery Testing

	Abuse Testing	Electrical Testing	Environment Testing		
 Small Fractional Thermal Runav Calorimetry Li-ion cells up to 10 Ah Total energy yield, Cell body vs. ejected energy yield Variability characterization vs. trigger method and SOC. Combination synchrotron. 	 Cell Level Abuse Testing Temperature measurement Heater, ISC-D, and nail trigger methods 4K videography IR video feed Facilitate of online and inperson interaction with customer. 	 Gas Analysis Equipped to take samples during testing (vacuum bottle) Submit for 3rd party analysis Evaluation of composition of expelled thermal runaway gases. 	 WI-37A Screening Mass and dimensional consistencies Capacity retention. DCIR consistency. Visual defect inspection (scratches, dents, corrosion) Matched for pack installation. 	 Thermal Vacuum (2025 K1-TS Pipeline) -60 C to +150 C thermal 10-6 Torr vacuum pull Can combine with Arbin systems for pack/module cycling. Electronics (BMS) check-out 	
 Large Fractional Thermal Runav Calorimetry Li-ion cells up to 200 Ah Total energy yield, Cell body vs. ejected energy yield Variability characterization vs. trigger method and SOC. 	 Pack/Module Abuse Testing Temperature measurement Heater, ISC-D, and nail trigger methods 4K videography IR video feed Facilitate of online and in- person interaction with customer. 	 Particle Size Analysis Ejecta materials vary in particles size depending on ejection characteristics and level of material decomposition. Microscopic characterization of particle size as a function of grouping. 	 Cell Cycling 60 A / channel cycling capability w/ Arbin based systems. Cell capacity fade vs. cycle count vs. power profile. Accelerated aging (2025 pipeline). 	 Thermal & Humidity (2025 K1-TS Pipeline) -40 to 120 C environment. Up to 100% humidity. Can combine with Arbin systems for pack/module cycling. Electronics (BMS) check-out 	
 Impingement Zone Mapping Li-ion cells up to 30 Ah Ejecta impingement region intensity and heat flux characterization. High speed videography and frame by frame analysis of ejecta behavior. Variability characterization vs. trigger method and SOC. 	 Adiabatic Bomb Calorimetry Adiabatic calorimetry modes Heat, wait, seek (standard ARC testing) Determination of material decomposition threshold Measurement of thermal runaway onset temperature Characterization of cell body heating rates 	 Specialized Instrumentation an Set-up (All Methods) Equipped to provide custom specialized instrumentation and set-up for all testing methods. Ex: In-Situ HF sensors, gas collection systems, customizable NI based DAQ chassis. Controlled atmosphere composition experiments. 	 Module Cycling 200 A / 200 V channel cycling capability with Arbin based system. Conducive set-up for pack/module electrical and thermal performance characterization. Can combine with abuse testing apparatus upon request. 	 Vibration (2026 K1-TS Pipeline) Up to 300 lb payload. SLS, Vulcan Centaur, and GEVS profile compatible. 	

Bomb Calorimetry

KULR offers extended volume bomb calorimeter services for characterization of material decomposition thresholds of lithium-ion cells. The calorimeter is also useful for determining cell specific heat capacity and can also be used as an adiabatic calorimeter for characterization of cell heating rates as a function of charge and discharge profile.

Benefits

- Determine temperature thresholds for separator breakdown, anode/SEI decomposition acceleration, and thermal runaway onset temperature.
- · Measure total volume of thermal runaway gases generated.
- Approximate gas generation rate.
- Approximate total energy release due to thermal runaway.
- Ease of data comparison by gathering thermal runaway data in a format that is highly referenced in academic literature.

Key Features

- Industry standard heat-wait-seek methodology.
- Interface for temperature, pressure, and other ancillary sensor measurements.
- Interface for gas sampling.
- In-situ HF, CO, CO₂ sampling (experimental)

Fractional Thermal Runaway Calorimeter

KULR holds commercial license for NASA's government invention of the year award (IOTYA) winning small format fractional thermal runaway calorimeter (S-FTRC). FTRC provides calorimetric techniques for evaluating heating response of cell level thermal runaway events.

Benefits

- Measures the total and fractional energy generated due to thermal runaway of a lithium-ion cell.
- Provides insight into the breakdown of energy as it pertains to that released through the cell casing vs. that which is ejected away through the positive and negative ends of the cell.
- Provides critical information for modeling activities that are used to optimize the design of safer batteries.
- Rapid collection of large datasets.
- Design suitable for characterizing thermal runaway variability.

Key Features

- Determination of total energy (kJ) and fractional energy (kJ) yields.
- Heat rate (W) and heat flux (W m⁻²) analysis.
- Approximation of mass flow rate (g s⁻¹).
- Breakdown of remaining cell mass vs. ejected.
- 18650, 21700, cylindrical, prismatic, and custom pouch formats.
- Compatible with heater, nail, and ISC-D trigger methods.

Fractional Thermal Runaway Calorimeter

Medium and Large Format FTRC (M-FTRC / L-FTRC)

KULR holds an exclusive licensing agreement for the large format FTRC (L-FTRC) for characterization of fractional energy yield from large format lithium-ion cells when triggered into thermal runaway. A large format cell, with respect to this design, is a cell with capacity greater than 100 Ah. KULR has also modified the L-FTRC with smaller bore apparatus to accommodate "mid" range lithium-ion cell capacities. As such, KULR is the only entity offering comprehensive FTRC testing services for any cell, regardless of capacity.

Benefits

- Measures the total and fractional energy generated due to thermal runaway of a lithium-ion cell.
- Provides insight into the breakdown of energy as it pertains to that released through the cell casing vs. that which is ejected away through the positive and negative ends of the cell.
- Provides critical information for modeling activities that are used to optimize the design of safer batteries.
- Rapid collection of large datasets.
- Design suitable for characterizing thermal runaway variability.

Key Features

- Determination of total energy (kJ) and fractional energy (kJ) yields.
- Heat rate (W) and heat flux (W m⁻²) analysis.
- Approximation of mass flow rate (g s⁻¹).
- · Breakdown of remaining cell mass vs. ejected.
- Typically requires custom cell chamber to match customer cell.
- Compatible with heater, nail, and ISC-D trigger methods.

KULR Developed M-FTRC

Impingement Zone Mapping

KULR has developed a technique referred to as impingement zone mapping (IZM) to help provided data necessary for designing battery shielding that is used in some of the most vulnerable areas of a battery pack as it pertains to thermal runaway.

Benefits

- Characterization of ejecta behavior, including velocity approximation.
- · Determination of impingement zone size, shape, and intensity.
- Improved battery safety through understanding of cell behavior.
- Reduced risk by identifying battery enclosure weaknesses.

Key Features

- 360 view mapping at 240 fps.
- Heat rate (W) and heat flux (W m⁻²) analysis.
- 18650, 21700, cylindrical, prismatić, and custom pouch formats.
- Suitable for swap-out of blast plate shielding materials for performance characterization as a function of cell type and trigger method.
- · Open cavity testing supports IR camera utilization.

Impingement Zone Mapping Apparatus Characteristics

Distance to back-plane (ejecta length)	5mm to 254mm
Back-plane x,y	178mm x 178mm
Max camera frame rate	240 fps
Temperature measurement type	Type K thermocouple
Temperature measurement frequency	90 Hz
Custom post processing algorithm	Python

Impingement Zone Mapping

Pack Abuse Testing

Cell-Description

Cell-Serial-Numbe

O MJ1 D P28A

MJ1_0

MJ1_40

P28A_0 P28A_20

P28A_40

P28A_100

67.32

Test to Test Total Energy Yield (Comparison 3)

KULR 18650

Cell-Description / Cell-Serial-Number

Thermal Runaway Characterization, What's Next?

Thermal runaway is highly variable. Customer datasets are limited to data captured during private testing. 2025 roadmap for testing services will see a re-vamp of how reporting is done by working to automate comparison of customer data to larger available datasets. The focus will be on increasing the analytics received by the customer for every report.

.....

Reference: Walker et. al. "Understanding Thermal Runaway Variability" (2021).

KULR

Cell Screening to JSC EP-WI37A

Fully automated approach to quality control screening to the manned spaceflight standard NASA JSC EP-WI-37A which provides checks for for cell mass & dimensional consistency, visual defects, and electrical behavior.

Benefits

- High volume throughput (up to 500K cells per year).
- Ensure only the safest and most reliable cells are used in production batteries.
- Cell level traceability of all measurements.
- Safer and higher reliability battery packs through increased cell quality.

Key Features

- Compatible with 18650 cells; 21700 coming online Q2 2024.
- · Checks for mass and dimensional consistency.
- Visual inspection for physical damage, scratches, dents, and defects.
- Visual inspection for corrosion.
- DCIR measurement and inspection for voltage retention.
- Cell sorting and matching for assembly.

KULR

Battery Production

Fa	brication and Assembly Capabilit	ties
 Precision Machining 4-Axis CNC capable of regular building materials 3-Axis CNC capable of exotic material machining (Yttria, other ceramics, Syntactic foams) Router CNC for organics and light materials 	 Laser Cutting CO2 Laser capable of cutting up to 0.5" thick organics and acrylics. Also capable of engraving Fiber Laser capable of cutting nickel and other metals to make battery tabs and components 	 Clean Room Availability KULR maintains a clean room for assembly and testing of battery systems 900sqft built for ISO 8 certification
 3D Printing Selective laser sintering (SLS) printing capable of nylon 11 and 12, and carbon fiber Regular FDM multi-head printing ability in ABS, PLA, Nylon, and others 	 Pack/Module Assembly KULR maintains a prototype assembly lab in addition to the clean room. All required tools including high voltage tooling, plastic manipulation tools and a full electrical bench. 	Check-out & Acceptance • Between the clean room and prototype room there are many high-power power supplies, load banks, battery testers and even Arbin Cyclers to perform testing at the cell and pack level.
 Standard Machine Shop Standard hand and power tools Manual Mill Saws, grinders, sanders and polishers 	 Resistance Tab Welding Resistance tab welding for battery pack assemblies inhouse. High current welding with waveform data monitoring 	IS9000/AS9100 QMS and Standards • KULR is certifying its Webster location as an AS9100 certified engineering and manufacturing facility to further serve the aerospace community

Haas[®] CNC Mill

Formlabs Fuse1 SLS 3D Printer

ISO 9001 Certification

Amada Weld Tech Resistance Tab Welder

KULR

Battery Storage and Transportation

SafeCASE and SafeSLEEVE

Safe Transportation and Storage of Lithium-ion Batteries

SafeCASE and SafeSLEEVE are the first product line to offer lithium-ion battery shipping coverage up to 2.5 kWh nationwide. Product lines come in customizable formats and sizes and rely on passively propagation resistant (PPR) design features to ensure maximum safety is achieved. Used by NASA in crewed missions since 2019 for laptop batteries.

Benefits

- Nationwide shipping
- Product has been rigorously tested with various batteries constructed from multiple cell formats (including 18650, 21700, and prismatic) to ensure superior safety
- Testing campaigns have included single cells, e-bike batteries, power tool batteries, and large format industrial batteries.
- DOT-permitted customization for secure and personalized transportation.
- Provides certificates of recycling (COR) for precise ESG reporting.
- Swift removal and recycling ensure brand risk management and safety, regardless of battery condition.

Key Features

- Protection with combination of integrated KULR blast plates, patented thermal runaway shielding, and robust thermal liners.
- Total thermal runaway containment up to 2.5 kWh (SafeCASE) or 300 Wh (SafeSLEEVE)
- Light weight soft goods-based design.
- Re-usable

SafeCASE Model R Experiment

cooler · lighter · safer