Announcements

KULR Carbon Velvet Enables Cooler Digital Gear - Forbes


October 21, 2016: Managing heat has been a growing concern in consumer electronics as performance increases, form factors shrink and applications push mobile design requirements. As a result, designing systems to manage heat has become an art of balancing endless trade-offs, as demonstrated by the recent Samsung Galaxy Note 7 issues. However, KULR Technology is introducing a flexible carbon fiber heat sink that may eliminate many of the design trade-offs, while enabling a new generation of electronic form factors.


When first approached about the concept of using carbon fiber in consumer electronics, my first thought was using it as the case, which has already been done. What KULR is doing is completely different. KULR has developed a velvet material made from carbon fibers. Not only does carbon fiber have higher tensile strength than steel when combined with epoxies or resins, it also has incredible heat conducting properties, making it a natural heat sink. When you combine vertical strands of carbon fiber into a velvet-like material, you create a heat sink that has a larger surface area. A larger surface area means that carbon fiber-based materials can dissipate more heat than traditional metal heat sinks.

Image from TIRIAS Research

KULR calls the material carbon velvet. The resulting heat sink or thermal interface material is called FTI. FTI is flexible in both its composition and application. KULR can change the length and density of the fibers in its carbon velvet to change the heat transfer characteristics and cost. In application, the material can mold to a circuit board and its chips like a blanket. In addition to dissipating heat, this blanket also reduces the design requirements associated with traditional heat sinks, and eases the assembly of the final product.


The flexible nature of the carbon velvet allows for creative product form factors, such as devices that mold to body parts. In talking to the KULR technical staff about the technology, it is also easy to see how the carbon velvet could be adapted to an almost endless list of applications ranging from augmented reality (AR) and virtual reality (VR) headsets to servers, electric vehicles, and renewable energy applications.


Carbon fiber heat transfer technology is not new. It was originally developed over two decades ago for extremely demanding applications that could absorb the expense, including aerospace and industrial equipment. KULR’s proprietary manufacturing process is the enabling factor for wider adoption of carbon velvet technology. KULR can manufacture carbon velvet at competitive price points for many applications that might not have considered carbon fiber heat transfer solutions.


Carbon velvet is one of those seemly simple solutions that addresses a top design constraint for the electronics industry – managing heat. Its benefits extend to reducing weight and enabling new form factors, which will be key for many markets, such as smartphones, wearables, IoT and even data center products. This broad applicability makes carbon velvet valuable for a wide range of companies ranging from Apple to GE.


If you are interested in a deeper dive, we have posted a more detailed analysis of the technology and comparison to traditional heat sinks here.


By Jim McGregor, click here to read the original article at Forbes.com.